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ABSTRACT

PREDICTING THE PRIMARY TISSUES OF CANCERS OF UNKNOWN
PRIMARY USING MACHINE LEARNING

Karimov, Kamran
M.S., Department of Bioinformatics

Supervisor: Assist. Prof. Dr. Aybar Can Acar

December 2023, 53 pages

Cancers of Unknown Primary (CUP) origin are metastases where the primary source
of the tumor cannot be detected and only the secondary tumor is evident. This can
cause problems in treatment since the tissue of origin defines the base characteris-
tics of the tumor and most therapeutic methods are specific to these characteristics.
We built three machine learning models to predict the primary tissue of CUPs based
on gene expression profile similarities between the primary tumor and its metastases.
The models are trained on 8798 cancer cases across 14 different cancer types obtained
from the TCGA program. The specific cancer types are annotated in the data used.
During the process, we tried origin prediction based on specific gene types and com-
pared these results with each other and with overall accuracy. The trained model can
assist in CUP diagnoses, by further development, using more data.

Keywords: CUP prediction, cancer, machine learning, logistic regression
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ÖZ

PRİMERİ BİLİNMEYEN KANSERLERİN PRİMER DOKULARININ
MAKİNE ÖĞRENMESİ YÖNTEMLERİ İLE TAHMİNİ

Karimov, Kamran
Yüksek Lisans, Biyoenformatik Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Aybar Can Acar

Aralık 2023, 53 sayfa

Primeri Bilinmeyen Kanserler (PBK), tümörün birincil kaynağının tespit edileme-
diği ve yalnızca ikincil tümörün belirgin olduğu metastazlardır. Köken doku tümörün
temel özelliklerini tanımladığından ve çoğu tedavi yöntemi bu özelliklere özgü ol-
duğundan, bu durum tedavide sorunlara neden olabilmektedir. Primer tümör ve onun
metastazları arasındaki gen anlatım profili benzerliklerine dayanarak PBK’ların pri-
mer dokusunu tahmin etmek için üç farklı makine öğrenmesi modeli oluşturduk. Mo-
deller, TCGA programından elde edilen 14 farklı kanser türünde 8798 kanser vakası
üzerinde eğitilmektedir. Kullanılan verilerde spesifik kanser türleri belirlidir. Süreç
boyunca belirli gen tiplerine dayalı olarak köken tahminini denedik, bu sonuçları bir-
birleriyle ve genel doğrulukla karşılaştırdık. Kurulan model, daha fazla veri sayesinde
geliştirilirse PBK teşhislerine yardımcı olabilir.

Anahtar Kelimeler: PBK tahmini, kanser, makine öğrenimi, lojistik regresyon
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CHAPTER 1

INTRODUCTION

The aberrant and unchecked division of cells is called cancer, which is one of the lead-
ing death causes in the world. The uncontrollable dividing cells are invasive, and they
may undergo a transition where they gain mesenchymal characteristics and infiltrate
the circulatory systems in the body. This may lead to spreading of the malignancy to
various sites in the body by a process called metastasis, hence formation of secondary
tumors.

Cancers of unknown primary (CUP) are secondary tumors detected in the body, where
the original site is not identified, due to either small size or loss of the primary tumor.
They constitute roughly 3-5% of all cancer cases in the world [1]. Treatment meth-
ods in cancer involves prescription of drugs based on the type of the cancer, in other
words, based on its primary site. The ambiguity of the primary site in CUP impedes
specialized treatment, and this in turn, reduces the survival rate of the patients. Ac-
cording to Cancer Research UK (2023), among the people who were diagnosed with
CUP in England between the years 2012 and 2016, only 16% could survive for 1 year
or longer. Only 10% of them had survival rate above 3 years. According to American
Cancer Society, average survival time is 9 to 12 months from the time of diagnosis
with CUP.

Identification of primary site in CUP holds a great importance for an efficacious treat-
ment process. However, traditional histological methods frequently fail at this chal-
lenge. In one review, it was reported that when immunohistochemistry was applied to
identify a single tissue of origin, the prediction accuracy was 10.8-51% [?]. Another
review reports identification in less than 30% of the cases with unknown primary [2].

Several studies have been done to investigate the genomic profile in metastases of
primary tumors. There was found higher similarity between the metastases of breast
cancer and its primary tumor, rather than other cancers with the same metastasis site
by means of expression profile [3]. The same conclusion was reached in a simi-
lar study on breast cancer [4]. Drawbacks regarding use of immunohistochemistry in
primary site prediction and promising results from gene expression-based studies lead
to emergence of primary tissue identification methodologies that involve gene expres-
sion pattern. These include usage of biomarkers for lncRNAs, microRNAs and other
several gene types, CUP classifiers, or integrated methods which merges expression
data with immunohistochemistry or radiology results.
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Main CUP classifiers that are developed involve a branch of artificial intelligence
called machine learning. Machine learning (ML) constitutes a series of algorithms
that take in data, learns from the data and makes predictions based on the patterns
in the data. Because of the gene expression similarities of primary and secondary
tumors, these models were trained on already annotated cancer data obtained from
databases such as TCGA and ICGC. Different research teams have utilized DNA
methylation profile, mutation profile or gene expression profile for the same goal.
One of the major studies could achieve 96.70% accuracy across 32 cancer types using
gene expression profiles. This result was followed by application of the model for data
obtained from two different hospitals, and accuracy easily surpassed that of obtained
by immunohistochemistry in the literature [5].

Similar to the other existing works, we aim to utilize the genomic profile similarity
between the primary tumor and its metastases to predict the cancer type with over
90% accuracy. We built three different ML models and compared their accuracy in
predicting the origin tissue across 14 different cancer types. The used models are
logistic regression, support vector machine and random forest classifier. Therefore,
we trained the models on already annotated cancer cases obtained from the TCGA
program. The Logistic Regression model could achieve 96% accuracy, which is a
competitive result in comparison to the other existing works in this subject. Apart
from the overall accuracy, impact of the expression profile of specific gene types,
e.g., miRNA is investigated and compared to the overall accuracy.

Although significant genomic profile similarity is proven between primary and sec-
ondary tumors, steps in the life of cancer cells, such as, epithelial-mesenchymal tran-
sition and colonization in the metastasis site results in some differences in mutation
accumulation and gene expression, known as tumor heterogeneity. Another challenge
is guaranteeing that the genetic expression data obtained from the patient belongs to
a single type of cell, i.e., the secondary tumor. These factors can induce noise in the
identification process, hence need to be approached carefully.

In Chapter 2, we review nature cancer, mutations that lead to cancer, metastasis and
CUP. Here, we also explain machine learning and its applications in identifying CUP.
Similar works on the topic are briefly discussed.

In Chapter 3, we present the steps of the experimental work. Gene expression data
obtained from TCGA program, is cleaned and processed into a format to be input into
the planned ML models.

In Chapter 4, results of the experimental work are presented. The results include
the top 7 gene types that act as discriminators in identifying the cancers. Then, we
compare this data with a more complex analysis which deploys whole expression
profile-based classification.

In Chapter 5, we discuss the findings through comparison to other works available in
literature. We also review the limitations of this work, followed by possible sugges-
tions on further improvement of it.
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CHAPTER 2

LITERATURE REVIEW

2.1 Cancer and its types

The uncontrolled development of cells is the underlying characteristic of a compli-
cated set of disorders known as cancer [6]. In contrast to normal cells, which follow
specific lifecycles, cancer cells avoid apoptosis, a type of programmed cell death, and
multiply unchecked. Tumours are lumps of tissue that can cause disruptions to bod-
ily functioning due to disobedience of growth rules. But not all cancers manifest as
physical masses; leukaemia, for instance, multiply in the bone marrow and blood [7].

At the molecular level, tumorigenesis results from changes in multiple biological
pathways. Several stages are involved in turning a healthy cell malignant, and genetic
abnormalities are frequently the first to cause this change [8]. These mutations result
from environmental exposure to cancer-causing substances like tobacco smoke or UV
light, or they can be inherited. Mutations can cause tumour suppressor genes, which
normally regulate cell division, to become inactive or activate oncogenes, which nor-
mally drive cell development [9].

A selection process is akin to natural evolution as these aberrant cells multiply and
pick up further mutations, some of which benefit survival. Through a process known
as clonal expansion, a population of cells becomes more and more different from
what it was initially and more able to live, multiply, and invade other tissues [10].
The molecular profile of cancer is not constant; it varies greatly depending on the
tissue from which it originated and the mutations it carries. Since what works for
one patient or even one form of cancer does not work for another, this variety cre-
ates obstacles to treatment [11]. As such, molecular assessment of a patient’s cancer
has emerged as a key component of contemporary oncology, allowing customized
therapeutic strategies [12].

The hallmarks of cancer encompass six distinct biological capacities gained through-
out the complex and progressive evolution of human tumours. The factors above
encompass sustaining proliferative signalling, avoiding growth suppressors, resist-
ing the death of cells, enabling replicative immortality, generating angiogenesis, and
activating invasions and metastasis [13]. Within the framework of these distinctive
characteristics, scholars and practitioners can systematically classify and address the
ailment with more efficacy [14].
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2.1.1 Mutations and different cancer types

To comprehend the correlation between mutations and cancer, it is important to thor-
oughly examine the various forms of genetic modifications that can lay the foundation
for this intricate ailment. Mutations can be categorized into various classes, including
insertions, point mutations, deletions, and chromosomal rearrangements [15].

Point mutations represent the most elementary type of genetic alteration involving
modifying, inserting, or deleting a solitary nucleotide base [16]. Mutations can sig-
nificantly impact the functionality of proteins, particularly when they manifest in cru-
cial segments of the genetic material, such as the active site of an enzyme. Insertions
and deletions (indels) refer to adding or removing nucleotide bases within the DNA
sequence [17]. These genetic alterations can result in frameshift mutations, causing
a significant modification to the amino acid sequence located downstream of the mu-
tation site. Chromosomal rearrangements encompass genetic alterations, including
translocations, inverted positions, duplications, and large-scale deletions. These re-
arrangements can impair normal gene function or generate fusion genes that encode
proteins with carcinogenic properties [18].

Figure 2.1: Frameshift mutations in TGFβRII. The human gene coding for TGFβRII
contains a poly(A) sequence (A10). Insertion or deletion of adenine causes a
frameshift in the sequence which results in a completely different amino acid se-
quence downstream of the mutation. Adapted from [19]

Mutations can potentially induce oncogenes’ activation or tumour suppressor genes’
inactivation. Oncogenes are genetic elements that, upon undergoing mutations, can
induce the transformation of healthy cells into malignant cells [14]. An illustrative
example involves a point mutation occurring in the gene that encodes the RAS pro-
tein. This protein typically governs the regulation of cell development. However,
the presence of a point mutation can result in a variant of the RAS protein that is
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persistently active, hence facilitating unregulated cell division [20]. In contrast, tu-
mour suppressor genes, such as TP53, function as cell growth regulators by exerting
inhibitory effects [21]. The loss of control over cell division and subsequent cancer
development can occur when such genes are deleted or inactive [22].

The correlation between particular genetic alterations and various forms of cancer
has been well-established in the scientific literature [23]. Specific mutations are dis-
tinctive characteristics of specific malignancies, functioning as diagnostic markers
and possible targets for therapeutic interventions [24]. An elevated susceptibility to
breast and ovarian cancers is closely linked to genetic abnormalities occurring in the
BRCA1 and BRCA2 genes. When these genes are inactive due to mutation, the cell’s
capacity to effectively repair DNA damage is hindered. Consequently, this raises the
probability of more genetic mistakes occurring, which can ultimately result in the
development of cancer [25].

The relationship between mutations and the likelihood of developing cancer is com-
plex and multifaceted. Certain individuals who possess mutations in high-risk genes
do not experience the development of cancer, suggesting that other influential ele-
ments are at play [26]. These extra factors encompass environmental exposure, and
lifestyle choices, contributing significantly to cancer formation [27]. Examining these
genetic alterations has enhanced the comprehension of the biological mechanisms be-
hind cancer and has also facilitated the advancement of precise therapeutic interven-
tions [28]. For example, PARP inhibitors are a class of medications that target the
vulnerability of cancer cells with BRCA mutations, as these cells heavily depend on
the PARP enzyme for DNA repair mechanisms [29]. Through the inhibition of poly
(ADP-ribose) polymerase (PARP), these pharmaceutical agents successfully produce
a state of synthetic lethality, thereby selectively eliminating cancerous cells harbour-
ing BRCA mutations while preserving the viability of healthy cells [30].

2.1.2 Gene expression patterns in cancer types

Gene expression profiling has become a revolutionary method in examining cancer
biology, offering an unparalleled understanding of the molecular characteristics of
many forms of tumours [31]. This methodology simultaneously quantifies the ex-
pression levels of several genes, providing a comprehensive overview of the biologi-
cal processes occurring within a tumour. Researchers can discern patterns that indi-
cate malignancy by comparing gene expression profiles between malignant cells and
normal tissue [32].

Every form of cancer possesses a unique gene expression profile that signifies its
cellular source and the precise genetic modifications it contains [33]. For example,
breast cancer cells demonstrate an elevated expression of the oestrogen receptor gene,
whereas lung cancer cells manifest mutations that result in the excessive activation of
growth signalling pathways [34]. The disparities mentioned have ramifications that
extend beyond academia, as they significantly impact the classification and treatment
of tumours [35].
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Figure 2.2: E2F gene expression differences across 20 different cancer types. The
first part of each column corresponds to cancer tissue, whereas the second part corre-
sponds to normal tissue. Red color indicates overexpression, and blue color indicates
under-expression. Adapted from [36]

Regarding therapeutic interventions, the manifestation of specific genes can indicate a
tumour’s potential responsiveness to particular pharmaceutical agents [37]. An exam-
ple of this is the correlation between the overexpression of the HER2 gene in breast
cancer and the likelihood of a positive response to trastuzumab, a medication that
specifically targets this gene [38]. The expression of the KRAS gene can determine
the suitability of cetuximab treatment in colorectal cancer. The utilization of gene
expression profiling holds significant value within the domain of cancers of unknown
primary, wherein the specific location from which the malignancy originates remains
unidentified. The treatment of these tumours poses a substantial difficulty due to the
necessity of customizing therapy based on the specific tissue from which the cancer
originates [39]. Machine learning algorithms can analyze intricate gene expression
data and make predictions on the primary site, thus guiding treatment decisions [40].
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2.2 Metastasis

Metastasis refers to the mechanism through which malignant cells metastasize from
the site of origin to remote organs and tissues [41]. It is a multifaceted occurrence in-
volving numerous stages that substantially contribute to the illness and death linked to
cancer. Metastatic dissemination transpires when malignant cells acquire the capacity
to infiltrate adjacent tissues, infiltrate the circulatory system, and generate secondary
tumours at novel sites. This phenomenon not only signifies the intrinsic virulence
of the neoplastic cells but also the dynamic interaction between said cells and the
physiological milieu of the host [42].

It is impossible to emphasize the clinical impact that metastasis has. Metastatic
disease, which is frequently the primary cause of mortality among cancer patients,
is considerably more difficult to control. Localized therapies, such as radiation or
surgery, are frequently sufficient to treat the primary tumour. Effective systemic ther-
apies designed to prevent or treat metastatic spread require a comprehensive under-
standing of the mechanisms underlying metastasis. Moreover, an understanding of tu-
mour biology, including tumour heterogeneity, modification, and evolution through-
out cancer progression, is gained through the investigation of metastasis [43].

Figure 2.3: Depiction of metastasis. Metastatic cascade includes local invasion, in-
travasation, transport via the circulatory systems, extravasation, and colonization.
Adapted from [44]
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2.2.1 Mechanisms of Metastasis

Metastasis comprises a series of critical stages: local invasion, intravasation, trans-
port via the circulatory systems, extravasation and colonization. Cancer cells invade
adjacent tissue after detaching from the primary tumour and degrading extracellular
matrix barriers. Subsequently, cancer cells enter blood vessels and lymphatic sys-
tems via intravasation. After entering the bloodstream, these cells must endure the
hostile environment, avoid immune monitoring, and ultimately leave the circulation
via extravasation at remote sites. Establishing secondary tumours in novel organ sites
constitutes the ultimate stage, colonization, which necessitates adjustment and trans-
formation of the microenvironment [45].

The tumour microenvironment (TME) is an indispensable factor in each stage of
the metastatic progression. Fibroblasts, immune cells, endothelial cells, and other
noncancerous cells are among its constituents. Signalling molecules and extracellu-
lar matrix elements are also present. The TME and cancer cell interaction promote
the metastatic cascade. TME can facilitate intravasation and extravasation, promote
motility and invasiveness (via EMT), and provide a conducive niche for the survival
and proliferation of metastatic cells, among other modifications. Furthermore, the
TME play a role in the emergence of therapy resistance, thereby complicating the
management of metastatic disease [46].

2.2.2 Epithelial-Mesenchymal Transition (EMT)

The epithelial-to-mesenchymal transition (EMT) is a biological mechanism by which
an epithelial cell acquires the phenotype of a mesenchymal cell through numerous
biochemical changes. This metamorphosis leads to enhanced invasiveness, migratory
capability, and resistance to apoptosis. A network of signalling pathways involv-
ing numerous molecules, including growth factors (e.g., TGF-), transcription factors
(e.g., Snail, Slug, Twist), and microRNAs, regulates the induction of EMT in can-
cer cells. These molecules induce an upregulation of mesenchymal markers (e.g.,
vimentin) and a downregulation of epithelial markers (e.g., E-cadherin). All of these
factors contribute to the EMT process: reorganization of cytoskeletal structures, mod-
ification of cell-matrix interactions, and alteration of cell-cell adhesion properties re-
sult from activating these pathways [47].

The successful accomplishment of EMT confers enhanced migratory and invasive ca-
pabilities to cancer cells. By reorganizing the extracellular matrix, these transformed
cells facilitate passage through tissues. Additionally, they demonstrate enhanced re-
sistance to necrosis and can evade the immune system with greater efficacy. The
heightened invasive capability is pivotal in advancing localized tumours towards ma-
lignant metastasis [48].
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2.2.3 Challenges in Treating Metastatic Cancer

Detecting and selectively targeting metastatic cells represents a fundamental obstacle
in treating metastatic cancer. In addition to their low abundance of specific biomark-
ers, these cells frequently metastasize throughout the body before diagnosing the
primary tumour, making their detection difficult [49]. Moreover, the presence of
metastatic cells in various anatomical sites, which are frequently inaccessible, com-
plicates the implementation of targeted therapy [50].

Resistance to conventional therapies is a common characteristic of metastatic cancer
cells. Acquired through selective pressures exerted by therapeutic agents or intrinsic
genetic and epigenetic variations present within the tumour, resistance can manifest
in various ways [51]. Further complicating the development of successful treatments
are the heterogeneity, adaptability, and evolution of metastatic tumours in response
to the surroundings and treatment. In the effective treatment of metastatic cancer,
overcoming these resistance mechanisms continues to be a formidable obstacle [52].

2.3 Cancers of Unknown Primary Origin

Cancers of unknown primary origin (CUP) are a heterogeneous group of metastatic
malignancies for which, despite extensive clinical investigation, the primary site of
origin remains unidentified. They constitute an estimated 3-5% of the total number of
cancer diagnoses and pose a substantial clinical complication. CUPs exhibit various
histological characteristics, aggressive behaviour, and early dissemination. In the ab-
sence of a detectable primary tumour, late-stage presentations are common; therefore,
these malignancies constitute an essential domain of oncological investigation [49].

Table 2.1: Survival rate comparison between cancers of known and unknown primary
in Ontario. Adapted from [53]
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CUP is typically diagnosed exclusionarily, following the exclusion of known primary
malignancies via an extensive battery of diagnostic tests. Diagnosis by exclusion
is carried out when scientific knowledge is scarce. Due to this diagnostic ambigu-
ity, treatment planning is significantly complicated. Conventional cancer therapies
frequently target particular cancer types; therefore, treatment options become con-
strained and generally less productive in the absence of knowledge regarding the
primary site. Furthermore, the heterogeneous characteristics of CUPs introduce an
extra stratum of intricacy, given that individuals with CUP exhibit varying responses
to identical treatment protocols [54].

In CUP cases, it is critical to identify the primary tissue of origin to develop poten-
tially more effective and individualized treatment strategies. By considering the dis-
tinct attributes of the tissue thought to be the source of the malignancy, it is possible
to optimize therapeutic interventions. For example, therapeutic approaches for breast
cancer and lung cancer are notably distinct; therefore, ascertaining the probable aeti-
ology can facilitate the implementation of treatment protocols that are more suitable
and productive [55]. In addition, comprehension of the primary site can aid in an-
ticipating possible metastatic patterns and surveillance for recurrence, thus enabling
more proactive and individualized patient care [56].

Table 2.2: Comparison of hazard ratio between various cancer types and CUPs. Pa-
tients were diagnosed and died between 2002 and 2008. Only patients with one pri-
mary cancer and a positive metastasis status were considered. Adapted from [57]
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2.3.1 Historical Approaches to Identifying CUPs

At one time, conventional diagnostic techniques were predominantly utilized to ascer-
tain the primary site of cancers of unknown primary (CUPs). This process included
physical examinations, histopathological analysis, and imaging modalities such as
CT, MRI, and PET scans [58]. Histopathology, which entailed the investigation of
biopsy samples under a microscope, served as the foundation of these endeavours.
Pathologists analyze tissue attributes, including cell variety and structure, to formu-
late informed conjectures regarding the potential genesis of the malignancy. The
conventional approaches to tracing the origins of CUP encountered considerable con-
straints and difficulties. Numerous conventional diagnostic instruments were deficient
in specificity. Tumour markers, for example, exhibited variability across conditions
and were not solely associated with a specific form of cancer; thus, the outcomes were
indeterminate [59]. In one review, it was reported that when immunohistochemistry
was applied to identify a single tissue of origin, the prediction accuracy was 10.8-51%
[?]. Another review reports identification in less than 30% of the cases with unknown
primary. This result was also overshadowed by the existence of inconsistencies with
other big immunohistochemistry studies [2].

Biopsies and similar invasive procedures posed potential challenges for patients, par-
ticularly those who were in the advanced stages of their illnesses. Additionally, the
utilization of these traditional approaches to diagnosis frequently resulted in lengthy
process times, which caused a delay in the commencement of treatment [60].

2.3.2 Genomic Profiling in CUP Identification

Profiling of the genome has emerged as a fundamental technique in the study of CUPs.
Practical genomic profiling, which identifies distinctive genetic signatures that may
indicate the origin of a tumour by sequencing significant portions of the genome, has
been the subject of numerous studies [61]. Certain investigations have examined the
mutational landscape of CUPs, wherein they have identified distinct patterns that ex-
hibit correlations with established primary tumour sites. Similarity between primary
and secondary tumours extends to gene expression profiles. It was found that breast
cancer primary tumours grouped with their metastases when clustering was applied
[3]. Individuals have also identified potential therapeutic targets and deduced a tu-
mour’s source through targeted gene panels arranged to detect actionable mutations
[62].
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Figure 2.4: Dendrogram showing the relationship between 8 primary tumors and their
metastases by means of gene expression profiles [3].

The efficacy of genomic profiling in detecting CUP has been noteworthy, specifi-
cally in situations where conventional diagnostic approaches failed to reach a defini-
tive conclusion. Genomic profiling can comprehensively comprehend the tumour’s
molecular composition, thereby presenting insights that facilitate a more precise lo-
calization of the main site. However, this approach is not without its limitations
[63]. Tracing genomic signatures to a primary site is not always possible for all
tumours, and the analysis of genomic information can be difficult and demands spe-
cialized knowledge. Moreover, certain clinical environments may be unable to afford
comprehensive genomic profiling due to its prohibitive cost and limited accessibility.
Notwithstanding these obstacles, genomic profiling remains a potent instrument in
examining CUPs, substantially contributing to developing personalized cancer treat-
ment approaches [64].

2.4 The Cancer Genome Atlas (TCGA)

Cancer genome databases are indispensable in the ongoing battle against the disease.
They function as extensive storage of genetic data, offering comprehensive analyses
of the genomic modifications distinctive of numerous types of cancer [65]. These
tools empower scientists to conduct extensive investigations, establishing correla-
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tions between genetic variations and cancer phenotypes that are statistically signif-
icant [66].

The National Human Genome Research Institute (NHGRI) and the National Cancer
Institute (NCI) joined forces in 2006 to establish The Cancer Genome Atlas (TCGA).
The objective was to promote a more profound comprehension of cancer and assist
in the formulation of treatment approaches that are more effective. TCGA swiftly
broadened its scope to incorporate more than 33 cancer types, including hemato-
logic malignancies and solid tumours [67]. About cancer genome databases, TCGA
is among the most expansive and all-encompassing on a global scale. The database
contains gene expression profiles, millions of genetic mutations, copy number vari-
ations, and epigenetic modifications, among other information of an unprecedented
magnitude. This extensive repository has emerged as a fundamental component of
cancer genomic research, providing scientists and clinicians around the globe with
a wealth of information to comprehend the molecular underpinnings of cancer and
devise targeted therapies [68].

2.4.1 Content and Data Types in TCGA

The exhaustive compilation of genomic data types contained in TCGA offers a wide-
ranging overview of genetic alterations associated with cancer. Comprehensive data
on genetic mutations, such as single nucleotide polymorphisms (SNPs) and struc-
tural variations within cancer genomes, is made available through Whole Genome
Sequencing (WGS) and Whole Exome Sequencing (WES). TCGA obtains insights
into the contributions of gene expression alterations to cancer by capturing the pre-
sentation levels of genes across various cancer types via RNA sequencing (RNA-seq).
This contains data regarding histone modifications and DNA methylation patterns,
which are essential for modulating gene expression without modifying the underly-
ing DNA sequence [69].

In addition to genomic information, the TCGA incorporates a wealth of clinical data
and metadata, encompassing:

Patient Demographics: Details including gender, age, and ethnicity.

Clinical Outcomes: Survival rates, treatment response information, and recurrence
data.

Pathological Information: Specifics regarding the tumour’s grade, histology, and
staging.

Environmental and Lifestyle Factors: Information regarding alcohol consumption,
smoking status, and other pertinent variables.
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2.4.2 TCGA’s Contribution to Cancer Research

TCGA has propelled the comprehension of the molecular biology of cancer to tremen-
dous heights. It has facilitated the identification of many molecular subtypes and ge-
netic mutations that span varieties of cancer. The revelation of particular gene muta-
tions, such as BRAF in melanoma and IDH1 in glioma, has significantly transformed
our comprehension of these malignancies [70].

The extensive data from TCGA has provided insights into intratumor heterogeneity,
which refers to the genetic diversity within tumours. This comprehension is essen-
tial in developing targeted, more efficacious treatment strategies [71]. By analyzing
genomic data, TCGA has assisted in identifying potential new drug targets and crit-
ical pathways involved in oncogenesis. As an illustration, elucidating the function
of the PI3K/AKT/mTOR pathway in numerous malignancies has facilitated the cre-
ation of targeted therapeutic interventions. The utilization of TCGA data has been
crucial in numerous scientific investigations, including the following: The applica-
tion of TCGA data in research has facilitated the development of targeted therapies
by enhancing our comprehension of the molecular categories of breast cancer [72].
Utilizing TCGA data, researchers have delineated the genomic environment of col-
orectal cancer, identifying biomarkers for treatment response and disease progression
and novel mutations [73].

Oncologists can develop more individualized treatment strategies by utilizing TCGA
data to characterize tumours at the molecular level. It is possible to match patients
with particular genetic mutations with targeted therapies with a higher probability of
success [61].

2.4.3 Other Relevant Databases and Comparative Analysis

The mission of the International Cancer Genome Consortium (ICGC) is to compre-
hend the genomic alterations that occur in various forms of cancer. The objective is
to produce genomic data of superior quality encompassing a wide range of cancer
types and populations. A multi-institutional effort, AACR Project GENIE (Genomics
Evidence Neoplasia Information Exchange) consolidates clinical and genomic can-
cer data to accelerate translational research and enhance patient treatment decision-
making [74].

Although all three databases contain genomic sequencing data, TCGA offers a more
extensive collection of data types, such as epigenomic and transcriptomic informa-
tion. ICGC provides comparable categories of genomic data, albeit with a greater
emphasis on global diversity. Genomic data associated with clinical outcomes con-
stitute the forefront of GENIE’s efforts.
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2.5 Machine Learning and Cancer Biology

A subfield of artificial intelligence (AI), machine learning (ML) is concerned with
creating statistical models and algorithms that enable computers to execute opera-
tions without explicit commands. The process entails instructing computers to ac-
quire knowledge from data and generate predictions or decisions. Algorithms capable
of machine learning can discern patterns and insights within massive datasets; their
performance and precision improve with time and exposure to additional data. This
discipline integrates computer science, statistics, and data analytics components to
develop models capable of efficiently processing intricate data [75].

2.5.1 Introduction to Machine Learning in Cancer Biology

ML is progressively emerging as an indispensable instrument in cancer biology [76].
Conventional analytical techniques are frequently insufficient in light of the prolifer-
ation of high-throughput methods and the accumulation of enormous datasets (e.g.,
genomic, transcriptomic, and proteomic data) in cancer research. In response to this
deficiency, ML offers robust capabilities for analyzing, interpreting, and extracting
significant insights from such intricate datasets. Its applications range from predict-
ing responses from patients to various treatments to identifying genetic mutations as-
sociated with malignancy [77]. ML plays a pivotal role in cancer biology by not only
comprehension of the molecular mechanisms that underlie cancer but also facilitating
the formulation of individualized treatment approaches—thereby enhancing patient
care and outcomes. As we move towards more data-driven, precise, and personal-
ized oncology, this incorporation of machine learning into cancer research signifies a
paradigm shift [78].

ML operates on the fundamental principle of constructing models capable of receiv-
ing input data, predicting outputs through statistical analysis, and updating outputs in
real-time as new data becomes accessible. Using algorithms and extensive data sets,
these models are "trained" to acquire the necessary skills to execute the given task
[79].

2.5.2 Types of Machine Learning Algorithms and Their Brief Comparison

Machine learning algorithms can be broadly classified into three categories: super-
vised learning, unsupervised learning and reinforcement learning.

In unsupervised learning, the algorithms undergo training using annotated data, which
consists of input-output pairs supplied to the model. As the model acquires the ability
to map inputs to outputs, it becomes viable for classification and regression tasks.
Some examples include neural networks, machines with support vectors, and decision
trees [80]. It is ideal in applications for forecasting future events using historical data.
The utilization of known datasets is prevalent in cancer diagnosis and prognosis.
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Unsupervised learning involves utilizing unlabeled data to train the model. It at-
tempts to detect patterns or grouping inherent in the data, which benefits association
and clustering duties. Principal component analysis (PCA) and k-means clustering
are two prevalent algorithms [81]. It is optimal for investigating the structure and
distribution of data, such as unlabeled identification of cancer subtypes or patterns
[82].

By utilizing a system of penalties and rewards, reinforcement learning forces the
computer to solve a problem independently. In robotics or gaming, for instance, it
is especially beneficial when the algorithm must make choices with uncertain out-
comes [83]. Despite its rarity, while not prevalent in cancer research, this approach
holds promise in domains such as adaptive therapies and treatment regimen optimiza-
tion—where data is scarce, and decision-making is sequential [84].

2.5.3 Machine Learning in Identifying Primary Tissue

Machine learning (ML) has significantly transformed the domain of cancer studies
and diagnosis through its wide-ranging applications. It facilitates early identification
of cancer through the more precise analysis of medical images, including mammog-
raphy, MRIs, and CT scans, compared to conventional methods [85]. In these images,
ML algorithms can detect subtle patterns that may signify the existence of tumours.
ML also facilitates the automated classification and analysis of samples of tissues in
diagnostic pathology, thereby enhancing the speed and precision of cancer diagnoses
[86].

Asserting the principal tissue in CUP cases may involve applying various machine-
learning techniques. These encompass supervised learning algorithms such as ran-
dom forests and support vector machines, which can be trained on established cancer
cases to categorize CUPs according to their molecular and genetic characteristics.
The application of deep learning methodologies, specifically convolutional neural
networks, to analyze intricate patterns in imaging data is growing in popularity. Ad-
ditional methods employ clustering and reduction of dimensionality algorithms to
identify novel subtypes of cancer that may be associated with particular primary sites
[87].

An additional noteworthy investigation utilized deep learning techniques, specifically
neural networks, to examine data on gene expression. This methodology facilitated
the detection of intricate patterns and intergeneric interactions, thereby augmenting
the precision of primary tissue prognosis [88].

Research at CUP has also demonstrated the potential of combining machine learning
with radiomics to extract quantitative characteristics from medical images. Extraction
of an exhaustive collection of radiomic characteristics from imaging data (such as CT
scans or MRIs) of patients with previously diagnosed primary malignancies has been
the focus of research in this field [89]. The features were subsequently correlated
with particular forms of cancer using machine learning models. When applied to
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CUP cases, these models could suggest potential primary sites based on imaging
characteristics, thereby facilitating differential diagnosis.

2.5.4 CUP-AI-Dx

The number of studies employing machine learning (ML) to forecast CUPs aetiology
has increased significantly in recent years. In one article, authors utilized 1D con-
volutional neural networks to develop an RNA-classifier [5]. The model was named
CUP-AI-Dx, and it was trained on transcriptome profiling of 18,217 patient entries
from TCGA and ICGC. It was able to classify 32 different cancer types from TCGA
database with 96.70% accuracy. The model was further applied to patient data from
two unrelated clinical institutions, and authors had obtained 86.96% and 72.46% ac-
curacy.

Figure 2.5: Prediction workflow of CUP-AI-Dx model. The model is trained by
TCGA and ICGC data, and tested on both the same data and external data. Adapted
from [5]

2.5.5 Integrative Approaches Combining Multiple Data Types

An emerging trend in CUP identification is the integrative approach, which integrates
genomic, transcriptomic, and clinical data for a more comprehensive analysis [90].
By leveraging the capabilities of genomic sequencing to detect mutations in genet-
ics transcriptomic analysis to comprehend gene expression patterns and clinical data
to offer contextual insights about the tumour, this multidimensional approach effec-
tively utilizes its potential. Several studies, for instance, have integrated these data
categories using sophisticated bioinformatics tools, resulting in the development of
complex models that can more accurately predict the primary site of CUPs than based
on only one of the data types. Adopting an integrative approach, this method provides
a better comprehension of the tumour’s biology by taking into account not only its
genetic composition but also its behaviour and interactions with the patient’s body
[91].
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CHAPTER 3

MATERIALS AND METHODS

3.1 Data retrieval and processing

The used dataset is provided by GDC data portal of National Cancer institute. It hosts
around 89000 cases aggregated across 82 projects. For consistency, cases are limited
to only gene expression quantification data from TCGA program. Gene expression
quantification refers to transcript counts across numerous genes in a cell.

GDC data web portal is used to download the data, alongside provided terminal client.
Firstly, user needs to go to the portal and select appropriate data type (“transcriptome
profiling” under data category and “Gene Expression Quantification” under data type)
under “files” tab and select cancer type and program. After that, portal generates a
manifest file which can be used by the client program.

The client downloads raw files which need further processing to be useful for data
analysis. Therefore, python scripts are created to massage them into right format.
Individual’s case file is in tab separated values (tsv) format with metadata attached to
it at the beginning. Then, each row in a file corresponds to a single gene and its “un-
stranded”, “stranded_first”, “stranded_second”, “tpm_unstranded”, “fpkm_unstranded”,
“fpkm-_uq_unstranded” expression values. In total, 8798 cases are downloaded which
span 14 different cancer types.

Since these columns are highly correlated values and can be derived from each other,
only “tpm_unstranded” values are used, and the rest is discarded. Moreover, there
are about 60000 transcripts belonging to 40 gene types in the dataset and loading
them all would make data frames too big, so, a script is made so that it creates a data
frame for single gene type which can later be merged together if needed. These 40
gene types refers to the 40 unique values under the column named "gene_types" in
RNA sequencing files. After the data is processed into a usable format, it is split into
train, validation and test parts (80%-10%-10% of data respectively, see Table 3.1 for
number of cases). Only training data is used to fit the models, and validation data is
used to make decisions on feature selection and hyperparameter tuning which will be
detailed on later sections. Test data will only be used to report on performance of the
final models. This ensures that no bias is introduced while developing the models.
For processing the data, visualization and building of models, python programming
language was used alongside pandas, scikit-learn and seaborn libraries.
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Figure 3.1: Overview of methodology employed.

Data dimensionality is reduced through use of feature selection and dimensionality
reduction steps to discard irrelevant gene types and any features that do not help the
models in those gene types. The overview of all the steps is given on Figure 3.1 and
will be explained in detail in next sections.

Table 3.1: Number of cancer types for training, validation and test data.
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3.2 Feature selection

There are 40 gene types in the whole data and not all of them are useful. A feature
selection step is applied involving a simple classification method on each gene type to
select the most useful gene types. The goal of this initial classifier is not to produce the
best results but provide clues to what features to keep. Logistic regression classifier is
used in this step as it is the simplest model and does not require any hyperparameter
tuning. The process is as follows:

1. Load data for single gene type.

2. Fit PCA and keep top 20 components.

3. Train logistic regression on PCA features.

4. Repeat steps 1-3 for all 40 gene types.

5. Rank the gene types based on initial accuracy scores.

6. Select the most important gene types that rank at the top.

Between steps 2 and 3, Min-Max scaling is applied to the features before feeding it
into a model. It sets maximum and minimum value of a feature into user defined range
and linearly scales intermediate values. This step does not change the underlying data
as it is simply scaling the values. However, it helps the models during the learning
stage since large positive and negative values can lead to numerical instabilities in
the algorithms. All the features in the dataset are “squished” into [-5,5] range. The
process is shown pictorially on Figure 3.2.

Figure 3.2: Depiction of feature selection process.

After the gene types are selected, the correlation matrix which shows the correlation
coefficient between each pair of the top PCA feature of each gene type are examined.
Correlation coefficient ranges from -1 to 1 and indicates how related two variables are.
Value closer to 1 means that when one variable increases, the other variable increases
as well. Negative values indicate variables move in opposite direction, when one
increases, the other decreases. Correlation coefficient of 0 indicates that the variables
are independent. It is usually beneficial to discard highly correlated variables in the
dataset before feeding them into learning methods. Therefore, this step is used to
ensure that the chosen gene types do not show any high correlation.
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3.3 Dimensionality reduction

Once the relevant gene types are selected, their raw data are concatenated into a fi-
nal form. It results in a data frame with more than 41000 gene features (transcripts).
Therefore, another PCA is applied again to the combined dataset to reduce dimen-
sionality. A logistic regression is trained using top 20 feature of the obtained dataset
(same min-max scaling in the feature selection was also applied here as well) and
accuracy is compared against that of models in the feature selection to make sure the
performance is not deteriorating. After that, more PCA features are included progres-
sively (until 120), and performance of the classifier is monitored. “Elbow method”
is used to choose the number of features to keep. Using this method, one looks for
a point where the accuracy plateaus. After choosing the appropriate number of com-
ponents to keep, other machine learning methods are applied to the dataset and best
performing hyperparameters are selected using validation data.

3.4 Modelling

Machine learning methods further employed in this work are Logistic Regression with
L2 regularization, Support Vector Machine (SVM) classifier and Random Forest clas-
sifier. scikit-learn package provides parameter C to control regularization strength,
higher values meaning weaker regularization. Its value was varied between 0.2 and
10 to tune logistic regression and SVM classifiers. In addition, linear and radial-basis
function kernels were tried when choosing appropriate SVM model. For Random
Forest models two hyperparameters were varied, number of trees in ensemble - be-
tween 50 and 500 and maximum depth of each tree – between 10 and 40. Based on
their performance on the validation data, best hyperparameter combination are chosen
for these three methods and their accuracy are presented using test data at the end.

3.5 Measuring classification performance

Various classification algorithms are intended to be used on this dataset and their per-
formances are compared. One of the issues with the data is class imbalance. Class
imbalance makes it hard for the learner and it also requires caution with accuracy
analysis. Simple classification accuracy may not reflect the true picture. Therefore,
in addition to classification accuracy, so-called confusion matrix is reported as well.
Confusion matrix can be used to calculate the precision and the recall values. Pre-
cision refers to the proportion of actual positive classes among cases identified as
positive by a model, while recall measures the proportion of positive cases identified
by the model among all positive cases.

This provides greater insight into the behavior of our models from clinical standpoint
as we can assess, for example, how confident one can be when identifying certain
cancer type, as well as coverage of the given cancer type in the population. Precision
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and recall of classification model can be combined to estimate F1 score which is a
value between 0 and 1. Higher values of F1 score corresponds to a better classifier.
F1 score will be used as the main benchmark when discussing relative performance
of the various models.
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CHAPTER 4

RESULTS

4.1 Accuracy comparison across single gene type-based classifications

There were about 60000 different transcripts for each cancer patient in the data. PCA
was applied across 40 gene types, and using 20 features, accuracy was obtained as
seen in Figure 4.1. 7 out of 40 gene types outperform the others significantly by
means of the accuracy they could yield (Figure 4.1). These include long non-coding
RNA (lncRNA) genes, tyrosine-protein kinase (TEC) genes, protein coding genes,
three pseudogene types and microRNA genes. In the further steps of the procedure,
these 7 gene types were utilized.

Figure 4.1: The bar plot shows accuracy of logistic regression when each gene type
with 20 features was used.

In the next step, to check the significance of specific gene types in varying cancer
types, the top 3 gene types were selected to see their importance in defining the can-
cer type. From Table 4.1, it can be seen that long non-coding RNA genes expression
constitutes a notable part in transcriptome profile of brain and prostate gland can-
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cer. Prediction solely based on lncRNA could forecast 96% and 95% of all brain and
prostate cancers respectively with no false positive results. On the other hand, pancre-
atic cancer does not have a type-specific profile of lncRNA transcription as only 11%
of the whole type could be identified. The highest false positive rate was obtained for
lung cancer, due to wrong classification of numerous bladder, breast, pancreatic and
thyroid gland cancer cases.

Table 4.1: Confusion Matrix for long non-coding RNA expression data across 14
cancer types with recall and precision values.
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The same two cancer types scored the top results, when the prediction was based on
tyrosine-protein kinase (TEC) gene expression quantification. Thyroid gland cancer
could be identified 93% of the time, with 0.93 precision. Pancreatic cancer and blad-
der cancer scored the lowest, where only 30% and 11% of the whole typeset could be
identified respectively. The results also represent high value of false positives (Table
4.2).

Table 4.2: Confusion matrix for tyrosine-protein kinase expression data across 14
cancer types with recall and precision values.
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In the confusion matrix of protein coding genes, it could be seen that brain cancer,
liver cancer, prostate gland cancer and thyroid gland cancer scored the highest preci-
sion and recall values (Table 4.3). All prostate gland cancers could be identified with
only 2% being false positives. Pancreatic cancer scored higher compared to lncRNA
and TEC expression profile, 84% of it could be identified with 0.94 precision. The
lowest recall and precision rate was obtained for bladder cancer.

Table 4.3: Confusion matrix for protein coding genes across 14 cancer types with
recall and precision values.
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Cancer types such as brain, prostate gland and thyroid gland cancer has higher F1
scores (>0.9) in classification based on the top 3 gene types (Table 4.4). 7 out of
all cancer types had lower than 0.9 F1 scores for all the gene types. Among them,
bladder, corpus uteri, lung, stomach and pancreatic cancer are the main ones to touch
upon. The obtained results so far necessitate utilization of all 7 gene types for classifi-
cation and lower scoring cancer types will be tracked in further parts of the procedure.

Table 4.4: F1 scores for obtained for top 7 genes that scored the highest when the
used for the single gene type-based classification across 14 cancer types.

Before loading the features into the models for training, the correlation between the
top scoring 7 gene types was investigated. It was found that there is not any significant
correlation between gene types (Table 4.5). This enables the procedure forward into
the modelling step without concerns. If there was a high correlation between any
gene types, one of each correlated pair needed to be discarded.
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Table 4.5: Correlation matrix between gene types.

Figure 4.2: Accuracy versus number of components obtained by PCA. Accuracy
reaches plateau around 60 components
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4.2 Logistic Regression results

In the next step, principal component analysis was performed for reducing the di-
mensionality of the data from 59444 transcripts down to maximum of 120 features.
Based on the accuracy versus number of components analysis, it was chosen that
60 features yielded the best result based on three considerations: 1. accuracy score
was not getting significantly higher, 2. training and validation scores were moving in
the opposite direction, 3. higher number of features demands higher computational
resources (Figure 4.2).

Table 4.6: Logistic regression results with precision and recall values. Accuracy score
is given at the bottom right corner of the table (0.96).

Classification by logistic regression based on the features obtained from PCA ob-
tained 96% accuracy. Bladder, breast and lung cancer has the highest number of false
positives (Table 4.6). When the F1 scores for different cancer types were compared
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with those obtained by single gene type-based classification, it was observed a sig-
nificant increase (Table 4.7). Bladder cancer scored 0.85 in validation step and 0.84
in testing step. Despite this improvement, it was the lowest scoring cancer type. The
recall rate was 0.80, which means 20% of the time it could not be detected despite
being present.

Table 4.7: Comparison of overall accuracy and F1 scores of cancer types obtained
for single gene type-based classification and all genes-based classification by logistic
regression.

Pancreatic cancer had very low F1 scores across all the gene types, except protein
coding genes, and it scored 0.97 in validation step and 0.86 in testing step. Other
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cancer types, such as corpus uteri, colon and stomach cancer, despite not having over
0.90 F1 score previously, scored over 0.95 in the test results. Lung and breast cancer
stayed just under 0.95. Prostate cancer proved to be the most easily identifiable type
of cancer by means of its gene expression profile, followed by brain, colon, kidney
and skin cancer.

4.3 Comparison of Logistic Regression results with SVM and Random Forest
classifier results

After obtaining logistic regression results, two more models were applied on the data
for comparison. These models include a support vector machine and a random forest
classifier. Support vector model yielded the same accuracy as the logistic regression
model; however, random forest classifier yielded a lower accuracy (Table 4.8).

Table 4.8: Comparison of F1 scores of cancer types and overall accuracy for logistic
regression, support vector machine and random forest classifier.

Logistic regression classifier outperformed SVM in brain, skin, thyroid and pancreatic
cancer prediction. SVM performed better at predicting bladder, corpus uteri, ovary
and stomach cancer. The difference in the accuracy scores was less than 0.01 in the
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remaining cancers. Lowest accuracy score for logistic regression classifier was in
bladder cancer, and for SVM, it was pancreatic cancer. Both logistic regression and
SVM models bypassed 0.95 accuracy threshold for 10 out of 14 cancer types, however
random forest could only achieve this result for 5 out of 14 cancer types (Figure 4.2).

Figure 4.3: Bar plot of F1 scores for logistic regression, SVM and random forest
model across 14 cancer types. Black line represents 0.95 threshold as a reference.
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CHAPTER 5

DISCUSSION

5.1 LncRNA and miRNA expression in cancers

It was demonstrated in the results that long non-coding RNA (lncRNA) expression
profile is unique across many cancer types. Despite most of the human genome is
transcribed, only a small portion of the transcriptome can encode for proteins. LncR-
NAs are among the transcripts that cannot code for any proteins. They regulate tran-
scription level in the cell through different means. This includes modifying chromatin
state to activate or repress genes and interacting with ribonucleoprotein complexes
and transcription factors [92]. Due to their importance in DNA methylation profiles,
the obtained results compels us to look into methylation profile differences in cancer
types and how they are conserved in the metastases of the primary tumours.

In the obtained results, it was shown that brain cancer demonstrated an easily identi-
fiable expression profile for lncRNA genes (Table 4.1). This result is well supported
by the works in literature. Some lncRNAs that have oncogenic induction in gliomas
include HOTAIR, lncRNA-ATB, CRNDE, ECONEXIN. Another group of lncRNAs
are more context dependent and can demonstrate an elevated or lowered expression
level, such as, HOTTIP and MALAT1 [93].

Most of the lncRNAs regarding prostate cancer are tumor-promoting, and only a few
of them are tumor-suppressing [94]. Especially, PCA3 is the main biomarker lncRNA
that is upregulated in this cancer type. This expression profile allows easy identifica-
tion of this malignancy type, as shown in Table 4.1.

One of the noticeable points in the confusion matrix of lncRNA based classification is
that many of bladder, pancreas and thyroid gland cancers were classified as lung can-
cer. This could be either due to the non-unique expression profile of specific cancer
type for lncRNA, or an actual relationship. Lungs are the most common metasta-
sis site for breast cancer, thyroid cancer. Additionally, in a study by Shinagare et
al. (2011), 37% of patients with bladder cancer had lungs as a metastasis site [95].
TCGA program mainly focuses on data collection from primary tumours. However,
if we do not rule out the existence of data from secondary tumours, this could mean
that bladder cancer may change their lncRNA expression profile to that of the site
they metastasize to. This statistics could also exist due to similarities between some
subtypes of these two cancers types.
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In Table 4.4, miRNA profile can be distinguished in ovary cancer more easily. Ovar-
ian cancer is well-known for its miRNA overexpression rooted causes. MiRNAs can
be used as biomarkers for ovarian cancer prognosis [96]. On the contrary, prostate
cancer had a very low F1 score for miRNA expression-based classification.

5.2 TEC and pseudogene expression in cancers

TEC genes code for non-receptor tyrosine kinases that are located in the cell cyto-
plasm and mediate intracellular signaling. Overexpression of this class of tyrosine
kinases has been linked to hematological malignancies. Byrone’s tyrosine kinase
(BTK) is a common target for drugs such as Ibrutinib [97]. Based on Figure 4.1, it
can be said that TEC kinases are not only related to hematological cancers, since it
has a recognizable expression pattern in the cancer types classified in this work. Yue
et al., (2017) identified an overexpression of BTK in gliomas [98]. It is plausible that
BTK expression profile has played a significant role in identification of brain tumors
based on TEC genes in this work.

Expression profile of all three types of pseudogenes were among the top discrimi-
nators of cancer types. Pseudogenes could be processed, unprocessed (also known
as duplicated) or unitary. Processed pseudogenes occur via retrotransposons, a ge-
netic component that copies itself into the functional protein coding gene followed by
accumulation of the mutations that disable the gene. Unprocessed pseudogenes are
formed via gene duplication followed by disabling mutations. Unitary pseudogenes
are formed by accumulation of disabling mutations. Pseudogenes are highly linked to
various cancer types. They interfere with other transcripts either by hybridizing with
them or by competing for the same RNA-binding protein complexes [99].

Figure 5.1: Pseudogenes are classified into three groups based on their formation
mechanism. A) Retrotransposition of an mRNA molecule of a distant gene, B) Gene
duplication, C) Accumulation of mutations in the original gene. [99]
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5.3 Genomic profile of pancreatic cancer

Pancreatic cancer has one of the highest mortality rates of all malignant cases [100].
It has a considerable potential of metastasis because of its location. According to U.S.
Cancer Statistics Working Group (2023), 48.8% of all pancreatic cancer cases were
diagnosed at distant stage, which means the malignancy had already metastasized to
other regions into body at the time of diagnosis [101]. Therefore, pancreatic cancer
cases retrieved from TCGA must have been mostly at a distant stage. In this work,
this cancer type proved to be one of the most difficult to identify using a single type
of genes. This could be due to the smaller number of cases, i.e., class imbalance, or
it might indicate a change in gene expression pattern throughout metastasis process.
However, it scored significantly higher (0.88) F1 score when expression of protein
coding genes was used. In other works, it was found that the best three single gene
discriminators in pancreatic adenocarcinomas are KRT17, COL10A1 and CTHRC1
genes [102]. All these genes are protein-coding genes, as KRT17 codes for keratin
chain, and the ladder participates in collagen synthesis [103].

F1 score differs greatly between validation and testing. It went from 0.97 in the vali-
dation to 0.86 in the testing, and even lower in the other models. This strongly implies
the effects of class imbalance in this cancer type. We need to increase the amount of
patient data to get a more reliable result, however, TCGA program is especially scarce
on pancreatic cancer data. Increasing the coverage of this work to include ICGC pro-
gram, may improve the reliability of the results. Very low survival rate in pancreatic
cancer, lowers the importance of its identification in CUPs. It has hazard ratio of 1.71
compared to CUPs. In other words, the problem lies in detection of the malignancy
as a cancer, rather than being detected with an unknown the primary.

5.4 Analysis of confusion matrix obtained by logistic regression

In the confusion matrix of the logistic regression results, highest false positive rates
belong to pancreatic, lung and breast cancer. We should exclude pancreatic cancer
from this list because of very little number of cases in this cancer type, in other of
words, class imbalance. There exists an interesting pattern among the false positive
rates, which can be expressed in two items: 1) Many breast and lung cancer cases are
misclassified as each other 2) Many bladder cancer cases are misclassified as breast
and lung cancers. Frequent metastasis of breast cancer to lungs is a well-known fact.
It is reported that more than 60% of the metastatic breast cancer causes secondary
tumours at lungs or bones [104]. Moreover, in a study carried out in Taiwan, it was
found that patients with breast cancer had higher risk of developing second primary
lung cancers [105]. Hence, we can make two conclusions based on the above men-
tioned information, either breast cancer metastasized to lungs gains gene expression
similarity to that of the metastasis site, or some cases from lung and breast cancer are
annotated incorrectly.
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If we refer to previous works to decipher the similarity between breast and blad-
der cancer, it can be found that basal-like subtype of both malignancies share strong
similarities by means of the genes involved [106]. When it comes to the similarity
between bladder and lung cancer, it is reported that small cell carcinomas of bladder
are lung share a convergent pathogenesis [107]. However, it must be noted that small
cell carcinomas of bladder are very rare and account for less than 1% of bladder can-
cers. Another possible cause for this similarity may be due to subtypes of these two
cancer types. Squamous cell carcinoma (SCC) is a malignancy which can develop
in organs that are covered with squamous epithelium. Lungs and bladder are among
such organs [108]. It is possible that some cases in our data belong to groups SCCs
of lung and bladder that share a very similar genomic profile.

5.5 Comparative analysis of the final results

When combination of all biomarkers used, classification accuracy was improved.
Only 60 components derived by PCA were used instead of around 41000 different
transcripts. This was done to alleviate the stress on computational and time resources.
Linear models which include logistic regression and SVM classifier achieved a higher
accuracy than the random forest classifier, which is a non-linear model. Support vec-
tor classifier yielded the same accuracy as logistic regression, with similar F1 scores
per cancer type. SVM predominates logistic regression in bladder, corpus uteri, ovary
and stomach cancer, whereas, logistic regression performs better in identifying pan-
creatic, skin and thyroid cancer. Accuracy scores for all types of cancers are very
similar for these two models, except for pancreatic cancer, which may be because of
low abundance of the cases.

Random Forest classifiers has been regarded as among the top classification algo-
rithms in biology and medicine [109]. Despite this fact, it scored the lowest accuracy
in this work compared to the other two models. A possible explanation could be that
the number of components to be used in the modeling stage was chosen based on
the performance by logistic regression. This was because logistic regression was the
primary choice for the classification task, due to its higher computation speed than
decision tree algorithms. This also explains the accuracy similarity between logistic
regression and SVM, since they are both linear models.

However, when we varied the number of components in random forest classifier, it
also performed the best at 60 components like the other two models. Another reason
could be related to the loss function utilized in random forest algorithm. Despite
all hyperparameters being exhausted, only a maximum of 92% accuracy could be
obtained. In a study related to diabetes diagnosis by ML, logistic regression was
reported to score a better accuracy than random forest [110]. In another comparative
ML study, it was similarly found that logistic regression performed superior [111].
These findings do not rule out the possibility of logistic regression outperforming
random forest classifier in a classification-based task.
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Logistic regression is referred to as the main model in this study. For comparison,
two other works from literature are chosen. One of them involves a 1D inception
convolutional neural network named CUP-AI-Dx [5], and the other one is 5-layered
convolutional neural network [112]. CUP-AI-Dx includes subtypes of the cancer and
has been tested on clinical data, with promising results. When compared to these
two models, our model seems to have achieved a competitive classification accuracy
(Table 10 5.1). Because of the inclusion of cancer subtypes it is not possible to make
a direct comparison of F1 scores between CUP-AI-Dx and logistic regression in 4
cancer types. However, in 9 out of other 10 cancer types, close F1 scores are observed.
In case of bladder cancer our model has performed inferior.

Table 5.1: Comparison of logistic regression F1 scores achieved across 14 cancer
types in this work with the F1 scores by CUP-AI-Dx model and Hong team. Cancer
subtypes were classified separately in CUP-AI-Dx model, hence there are separate
F1 scores that correspond to a single F1 score in the other columns [5]. Some of the
cancer types used in this work were absent in the study by Hong team [112].

When we look at the results by the Hong team, some cancer types used in our work is
not covered. Among the comparable F1 scores, there are 2 main differences. Like the
previous comparison, the F1 score for bladder cancer in our work is lower. However,
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it must be noted that this time the difference is slighter, which signifies the challenge
in identification of bladder cancer. In case of colon cancer, our model has performed
significantly better than the neural network model by the Hong team.

5.6 Limitations

In this study, we aimed to utilize the similarity between primary tumors and their
metastases by means gene expression profiles. Because of this assumption, cancers
with already known types were used for training the models on. Since the data was
retrieved from the TCGA program, it was significantly clean. However, it must be
mentioned that the obtained results may not represents itself in clinical applications to
several factors. Firstly, despite the similarity, there also exists heterogeneity between
some tumors. This means the same tumor type in the organism may not represent the
genomic profile similarity. Despite scarce in numbers, some secondary tumors have
been reported to accumulate a different line of mutations compared to the correspond-
ing primary tumor [113]. Secondly, it could be challenging to get a clean expression
data depending on how difficult it is to obtain the tumor sample to run RT-qPCR on.
This can induce high levels of noise which, in turn, can lower the accuracy of the built
models in predicting the primary tissue. For example, when applied on data retrieved
from two different hospitals, one ML model achieved only 86.96% and 72.46% ac-
curacy, compared to the accuracy achieved on clean TCGA data, which was 96.70%
[5].

Another limitation in this work was related to lack of enough computational resources
to address a more variety of algorithms and data types. Models were built on a limited
number of components transformed by dimensionality reduction, because of huge
numbers of genes. Comparative analysis could be investigated between two scenarios,
where dimensionality reduction is applied or not, respectively.

Although machine learning can revolutionize the identification of primary tissues in
malignancies of unknown primary (CUP), existing methodologies have several draw-
backs. The scarcity of annotated datasets of superior quality, for example, pancreatic
cancer in this work, represents a principal obstacle. An inadequate degree of gener-
alizability characterizes numerous machine learning models. Although they exhibit
satisfactory performance on the training data, their ability to generate precise pre-
dictions diminishes when confronted with data from diverse populations or medical
centers. Variations in patient demographics, data collection methodologies, and dis-
ease presentations partially contribute to this constraint [114].

The perception of numerous sophisticated machine learning models, particularly deep
learning models, as "black boxes" is common. The absence of transparency poses a
substantial obstacle in clinical environments, where comprehension of the reasoning
behind a model’s prognosis is vital for establishing confidence and making informed
decisions [115].
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5.7 Future Directions

One of the major issues of this study was regarding the variation in the data by means
of demography and data collection centers. In other words, data from only TCGA
program is utilized. Although being advantageous because of its superior quality, data
scope could be extended to other programs such as ICGC, besides TCGA. This could
not only increase the size of training and test sample, but also introduce a realistic
variation. Increase in the size and variation of the data may also compel us to upgrade
our modeling approach to using neural networks. Consequently, built models ability
to allow for more possibilities and infer the most essential patterns in the data would
increase. In the further steps, the built models should be applied to clinical data to
check the performance variation.

TCGA program collects data mainly from primary cancers. Despite the reported ge-
netic similarities between primary and secondary cancers, including the differences
while building the models can yield more reliable outcomes. Hence, incorporation of
metastatic expression data to training and test samples can prove significant. Next, if a
similar pattern exists for deferentially expressed genes, we could try to minimize this
effect to build stronger relationship between primary and secondary tumours. How-
ever, it must be noted that, unfortunately, there are no well-known active databases
that collect metastatic transcriptomics data.

Gene expression is not the only genetic element that is found to be conserved between
primary and secondary tumours. Several studies have shown the importance of DNA
methylation profiles in identification of primary sites in diagnostics [116, 117, 118].
In this work, only two out of seven top discriminator gene types were coding for
proteins. Especially, lncRNAs, our top scoring discriminator, are well known for their
gravity in transcriptional regulation by modifying chromatin state [92]. Following
this motive, methylation patterns of specific cancers can be further investigated and
incorporated into our models for a better decision making process. Another type
of data that could prove useful for integrating into our model, is mutational profiles
specific to cancers. However, integration of all the above steps may also aggravate
the demand on complexity of the data to be obtained from the patients, which might
prolong the diagnosis period.
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